Hypergraph Spectra for Semi-supervised Feature Selection

نویسندگان

  • Zhihong Zhang
  • Edwin R. Hancock
  • Xiao Bai
چکیده

In many data analysis tasks, one is often confronted with the problem of selecting features from very high dimensional data. Most existing feature selection methods focus on ranking individual features based on a utility criterion, and select the optimal feature set in a greedy manner. However, the feature combinations found in this way do not give optimal classification performance, since they neglect the correlations among features. While the labeled data required by supervised feature selection can be scarce, there is usually no shortage of unlabeled data. In this paper, we propose a novel hypergraph based semi-supervised feature selection algorithm to select relevant features using both labeled and unlabeled data. There are two main contributions in this paper. The first is that by incorporating multidimensional interaction information (MII) for higher order similarities measure, we establish a novel hypergraph framework which is used for characterizing the multiple relationships within a set of samples. Thus, the structural information latent in the data can be more effectively modeled. Secondly, we derive a hypergraph subspace learning view of feature selection which casting the feature discriminant analysis into a regression framework that considers the correlations among features. As a result, we can evaluate joint feature combinations, rather than being confined to consider them individually. Experimental results demonstrate the effectiveness of our feature selection method on a number of standard face data-sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object c...

متن کامل

Semi-supervised hyperspectral band selection via spectral-spatial hypergraph model

Band selection is an essential step towards effective and efficient hyperspectral image classification. Traditional supervised band selection methods are often hindered by the problem of lacking enough training samples. To address this problem, we propose a semi-supervised band selection method that allows contribution from both labelled and unlabelled hyperspectral pixels. This method first bu...

متن کامل

Graph Laplacian for Semi-supervised Feature Selection in Regression Problems

Feature selection is fundamental in many data mining or machine learning applications. Most of the algorithms proposed for this task make the assumption that the data are either supervised or unsupervised, while in practice supervised and unsupervised samples are often simultaneously available. Semi-supervised feature selection is thus needed, and has been studied quite intensively these past f...

متن کامل

A Convex Formulation for Semi-Supervised Multi-Label Feature Selection

Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that th...

متن کامل

Analysis of Classification Algorithm on Hypergraph

Classification learning problem on hypergraph is an extension of multi-label classification problem on normal graph, which divides vertices on hypergraph into several classes. In this paper, we focus on the semi-supervised learning framework, and give theoretic analysis for spectral based hypergraph vertex classification semi-supervised learning algorithm. The generalization bound for such algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012